رابطه شعاع طیفی و نرم های عملگرهای خطی و کراندار

thesis
abstract

در این پایان نامه ما نرمهای ?-موافق را مورد بررسی قرار می دهیم. نشان می دهیم اگر x یک فضای باناخ باشد و (b(x جبر باناخ حاصل از عملگرهای خطی کراندار باشد، نرم ?-موافق با هر عملگر وجود دارد. سپس نشان می دهیم نرم ?-موافق با دو عملگر t و وارون آن در صورت وارون پذیر بودن وجود دارد.در ادامه نشان می دهیم نرم ?-موافق با تعداد متناهی از این عملگرها که باهم جابجا می شوند نیز وجود دارد. در ادامه این نتجه را برای یک زیرمجموعه فشرده جابجایی از عملگرها تعمیم می دهیم.این نتجه در c*-جبرها به طور خودکار برقرار است.در نهایت ما این نتایج را برای هر جبر باناخ جابجایی دلخواه تعمیم می دهیم.در ادامه به بیان یک مثال کاربردی از انتگرالهای کانتور می پردازیم که از نتایج قضایای اصلی پایان نامه در آن بهره می بریم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

شعاع های طیفی عملگرهای خطی کراندار بر روی فضاهای برداری توپولوژیک

برای تعریف یک عملگر خطی کراندار بر روی یک فضای برداری توپولوژیک، چندین راه غیر هم ارز وجود دارد که این رده ها از عملگرهای خطی، جبرهای تو در تو از جبر عملگرهای خطی بر روی یک فضای برداری توپولوژیک تشکیل می دهند. برای هر رده یک توپولوژی مناسب قابل تعریف است. همچنین برای یک عملگر خطی بر روی یک فضای برداری توپولوژیک، چندین طیف و چندین شعاع طیفی وجود دارد که باکمک آنها و همچنین توپولوژی مناسب هر رده ...

15 صفحه اول

بررسی جبر شعاع طیفی و عملگرهای نرمال

در این پایان نامه به بررسی جبرهای شعاع طیفی متناظر با عملگرهای نرمال می پردازیم. یکی از خواص مهم این جبرها که برای مطالعه ما ضروری است این است که شامل جابجاگرهای عملگر مورد بررسی می باشند. نشان می دهیم هرگاه عملگر غیر صفر n نرمال بوده و مضرب اسکالری از همانی نباشد، این شمول اکید است. نتیجه اصلی این پایان نامه نشان دادن این مطلب است که: جبر شعاع طیفی متناظر با عملگر نرمال دارای زیرفضای پایای نا...

15 صفحه اول

عملگرهای کراندار طیفی روی *c-جبرهای ساده

عملگرهای کراندار طیفی روی *c-جبرهای ساده و جبرهای فون نویمان و *c-جبرهای ساده با رتبه حقیقی صفر بروریختی جردن می باشد.

نتایجی پیرامون مدولهای تبدلات خطی و عملگرهای خطی کراندار

در این رساله به بررسی مدول های تبدیلات خطی روی فضاهای برداری و همچنین مدول های عملگرهای خطی و کراندار روی فضاهای هیلبرت می پردازیم.

عملگرهای کراندار طیفی روی جبر های فون نویمان

نشان می دهیم که هر عملگر کراندار طیفی پوشا و یکانی از یک جبر فون نویمان نامتناهی سره به روی جبر باناخ نیم ساده یک همومورفیسم جردن است.

15 صفحه اول

تسلط و شمول بردها و تجزیه برای عملگرهای خطی کراندار

در این پایات نامه تعمیم میان مفاهیم بیان شده را در فضای هیلبرت و سپس فضای بانخ بیان می کند و مچنین مثال های نقضی را نیز برای قضیه داگلاس در فضای هیلبرت بیان می کند.

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023